Explanatory Notes / Foreword

The VDMA Standard 24276 as amended in 1994 was revised by a task force of the "Design" Specialist Group No. 5 of the Pumps Division within the VDMA association, with significant assistance received from both the "Pumps" Project Group within the VCI and the "General Rules" Subcommittee 1.4 of the Pumps Branch within the Mechanical Engineering Standards Committee (NAM) of DIN e.V. This VDMA standard in its present version takes into account the current status of European and governing international standards as well as accumulated knowledge and experience of users and pump manufacturers.

Contents

1 Scope and purpose ... 1
2 Normative references ... 2
3 Selection of materials and component strength 4
4 Welding .. 7
5 Surface finish, coating, protection against corrosion 8
6 Quality assurance at the manufacturer's/suppliers's 8
7 Testing by the pump manufacturer ... 9
8 Testing witnessed by a representative authorized by
the user/customer ... 10
9 Incoming inspection at the user's/customer's 11
10 Marking .. 11
11 Certificates and technical documentation 11
12 Preparation for shipment ... 11

1 Scope and purpose

This VDMA Standard has been developed as a guide to standardizing quality requirements for components of pumps. It shall be adopted for all liquid pumps built from metallic materials, made by metal-forming methods such as forming, casting, or welded fabrication.

Where this VDMA Standard is to be applied

a) and a specific design is called for, alternative configurations may be proposed if they conform to the provisions of this VDMA Standard and such alternatives are described in detail.

b) pumps which do not comply with the complete set of specifications of this VDMA Standard, may be proposed provided that all the variations are indicated.

Continued on page 2 bis 11
Where a discrepancy as to the engineering requirements of this VDMA Standard results from various documents, the documents shall prevail in the order indicated below:

a) Purchase order or inquiry;

b) This VDMA Standard;

c) Other standards and rules referenced in the purchase order or the inquiry.

NOTE: Where a decision has to be taken by the user/customer or an agreement has to be reached between the user/customer and the manufacturer/supplier, bold type is used to highlight relevant text.

This VDMA Standard contains quality specifications in addition to general engineering requirements for liquid pumps such as those typically defined for centrifugal pumps in DIN ISO 9905 (Class I), DIN ISO 5199 (Class II), and DIN ISO 9908 (Class III).

Quality specifications fall into three grades with respect to the hazard potential, the availability (e.g. for single-line systems), or corrosion and wear. Grade III entails minimum requirements for pump components for general applications (e.g. for water and similar pump liquids characterized by a low hazard potential), whereas Grade II calls for high requirements such as those typically to be met in the chemical industry by alkaline solutions, acids and hydrocarbons including liquefied gas. Grade I involves particularly stringent quality requirements as to plant availability, the hazard potential of the pump liquid concerned, extreme demands as to temperature and pressure, as well as corrosion or leakage.

The grades shall be indicated by the user/customer in the inquiry specification. If no grade is indicated grade III is to be applied.